Genetic diversity, the level of biodiversity, refers to the total number of genetic characteristics in the genetic makeup of a species. It is distinguished from genetic variability, which describes the tendency of genetic characteristics to vary.
Genetic diversity serves as a way for populations to adapt to changing environments. With more variation, it is more likely that some individuals in a population will possess variations of alleles that are suited for the environment. Those individuals are more likely to survive to produce offspring bearing that allele. The population will continue for more generations because of the success of these individuals.[1]
The academic field of population genetics includes several hypotheses and theories regarding genetic diversity. The neutral theory of evolution proposes that diversity is the result of the accumulation of neutral substitutions. Diversifying selection is the hypothesis that two subpopulations of a species live in different environments that select for different alleles at a particular locus. This may occur, for instance, if a species has a large range relative to the mobility of individuals within it. Frequency-dependent selection is the hypothesis that as alleles become more common, they become more vulnerable. This is often invoked in host-pathogen interactions, where a high frequency of a defensive allele among the host means that it is more likely that a pathogen will spread if it is able to overcome that allele.
Contents |
There are many different ways to measure genetic diversity. The modern causes for the loss of animal genetic diversity have also been studied and identified.[2][3] A 2007 study conducted by the National Science Foundation found that genetic diversity and biodiversity are dependent upon each other—that diversity within a species is necessary to maintain diversity among species, and vice versa. According to the lead researcher in the study, Dr. Richard Lankau, "If any one type is removed from the system, the cycle can break down, and the community becomes dominated by a single species."[4]
The interdependence between genetic and biological diversity is delicate. Changes in biological diversity lead to changes in the environment, leading to adaptation of the remaining species. Changes in genetic diversity, such as in loss of species, leads to a loss of biological diversity.[1]
Genetic diversity plays a very important role in survival and adaptability of a species because when a species’s environment changes, slight gene variations are necessary to produce changes in the organisms' anatomy that enables it to adapt and survive. A species that has a large degree of genetic diversity among its population will have more variations from which to choose the most fit alleles. Increase in genetic diversity is also essential for a species to evolve. Species that have very little genetic variation are at a great risk. With very little gene variation within the species, healthy reproduction becomes increasingly difficult, and offspring often deal with similar problems to those of inbreeding.[5] The vulnerability of a population to certain types of diseases can also increase with reduction in genetic diversity.
When humans initially started farming, they used selective breeding to pass on desirable traits of the crops while omitting the undesirable ones. Selective breeding leads to monocultures: entire farms of nearly genetically identical plants. Little to no genetic diversity makes crops extremely susceptible to widespread disease. Bacteria morph and change constantly. When a disease causing bacterium changes to attack a specific genetic variation, it can easily wipe out vast quantities of the species. If the genetic variation that the bacterium is best at attacking happens to be that which humans have selectively bred to use for harvest, the entire crop will be wiped out.[6]
A very similar occurrence is the cause of the infamous Potato Famine in Ireland. Since new potato plants do not come as a result of reproduction but rather from pieces of the parent plant, no genetic diversity is developed, and the entire crop is essentially a clone of one potato, it is especially susceptible to an epidemic. In the 1840s, much of Ireland’s population depended on potatoes for food. They planted namely the “lumper” variety of potato, which was susceptible to a rot-causing plasmodiophorid called Phytophthora infestans.[7] This plasmodiophorid destroyed the vast majority of the potato crop, and left one million people to starve to death.
The natural world has several ways of preserving or increasing genetic diversity. Among oceanic plankton, viruses aid in the genetic shifting process. Ocean viruses, which infect the plankton, carry genes of other organisms in addition to their own. When a virus containing the genes of one cell infects another, the genetic makeup of the latter changes. This constant shift of genetic make-up helps to maintain a healthy population of plankton despite complex and unpredictable environmental changes.[8]
Cheetahs are a threatened species. Extremely low genetic diversity and resulting poor sperm quality has made breeding and survivorship difficult for cheetahs –- only about 5% of cheetahs survive to adulthood.[9] About 10,000 years ago, all but the jubatus species of cheetahs died out. The species encountered a population bottleneck and close family relatives were forced to mate with each other, or inbreed.[10] However, it has been recently discovered that female cheetahs can mate with more than one male per litter of cubs. They undergo induced ovulation, which means that a new egg is produced every time a female mates. By mating with multiple males, the mother increases the genetic diversity within a single litter of cubs.[11]
Genetic Diversity of a population can be assessed by some simple measures.
Alternatively, other types of diversity may be assessed for organisms:
There are broad correlations between different types of diversity. For example, there is a close link between vertebrate taxonomic and ecological diversity.[12]
|